Item B-2 Public Works Advisory Board

Water Reclamation Facility Quarterly Update Report

August 19, 2020

MORROBAY OUR WOTER RELIABLE. CLEAN. FOR LIFE.

Background

City's phased approach to hydrogeologic work to support petable reuse

- Phase 0 Feasibility
- Phase 1 Additional Modeling
- Phase 2 Selection of Injection Area
- Phase 3 Basis of Design and Permitting

Phase 0 focused on establishing feasibility of potable reuse

- Phase 0 Feasibility (May 2017)
 - Groundwater model developed
 - Potable reuse feasible
 - 825 acre-feet per year (AFY) injection capacity
 - Up to 1,200 AFT extraction capacity
 - Feasible sites both west and east of Highway 1

Final Report

Lower Morro Valley Basin Screening-Level Groundwater Modeling for Injection Feasibility

Morro Bay, California

Prepared for Michael K. Nunley & Associates and the City of Morro Bay

May 16, 2017

Prepared by

5855 Capistrano Avenue, Suite C Atascadero, CA 93422 P: 805.460.4621 info@gsiws.com www.gsiws.com

Phase 1 focused on long-term groundwater quality

- Phase 1 Additional Modeling (April 2019)
 - No sustained pumping without extraction (seawater intrusion)
 - Injection and extraction improves groundwater quality

Technical Memorandum

- To: Eric Casares
- Cc: Rob Livik
- From: Dave O'Rourke, Tim Thompson
- Date: April 19, 2019 Re: Morro Bay Water Reclamation Facility Groundwater Modelin

Executive Summary

A series of water quality scenarios were run using the 2017 groundwater model as prepared by GSI Water Solutions to assist in the evaluation of installing injection wells in the lower Morro groundwater basin as part of an Indirect Potable Reuse (IPR) project. Key results of the study are:

- Historical data and groundwater modeling indicate that the City's wells are at risk of seawater intrusion if the full permitted pumpage is produced with no injection.
- The bedrock "ridge" in the area of City wells MB-1 and MB-2 results in separate flow paths supplying the High School wells and the Highway 1 wells, and provides a degree of separation in the lower portion of the aquifer between the area of the high school wells and the Highway 1 well field.
- The model displayed adequate calibration for historically observed nitrate and TDS concentrations.
- Predictive nitrate scenarios indicate that all wells have significantly lower nitrate concentrations under either injection well configuration. MB-3 experiences the greatest reduction in nitrates using the Narrows Injection Well configuration. The remaining Highway 1 wells experience a greater nitrate reduction from the Southside injection well configuration.
- Predictive scenarios indicate that both the Narrows and the Southside injection well layouts
 eliminate significant sea water intrusion events in predictive scenarios.
- The Southside well layout results in slightly lower TDS concentrations in the Highway 1 wells than the Narrows layout. The Southside well locations lie between the well field and the ocean, and so may provide a greater barrier to intrusion events.

5855 Capistrano Avenue, Suite C Atascadero, CA 93422 P: 805.460.4621 info@gsiws.com www.gsiws.com

Current Work Efforts

Summary of Phase 2 tasks

- Gather additional information
- Update the existing groundwater model
- Select the preferred injection location
- Better define project feasibility

MORROBAY

Field work completed to better characterize the aquifer

- East "Narrows" Area
 - Cone penetration tests (CPT) conducted in April 2019
 - Piezometer installation
 - Monitoring well installation
 - Pump testing
- West Injection Area
 - Piezometer installation
 - Pump testing

Injection rates higher in the West Area

Existing model was updated based on field work

Injection Project Area	Figure	Scenario	Total Pumping (AFY)	Total Injection (AFY)	MB-3	MB-4	MB-14	MB-15	MB-1	MB-2	HS-1	HS-2	Flippos
ows ject ea	Figure 9	Base+75% Inj.	1200	825	1.5	1.5	2.5	2.5					
Narr proj aro	Figure 10	Base+75% Inj.	1200	825					6	6	3.5	3.5	3.5
n rea	Figure 11	Base+25% Inj.	787	825	3.5	3.5					>6	5.5	3
Wester project al	Figure 12	Base+75% Inj. (Dry)	995	825	3	3					7.5	4	2.5
	Figure 13	Base+75% Inj. (Wet)	1200	825	3.5	3.5					4	>4	2.5

Retentions times significantly greater

West injection area preferred

- Higher injection rates (transmissivity)
- Great retention times
- Greater mitigation between seawater intrusion
- Easier implementation (non-residential)
- Lower cost (potable reuse pipeline)

Additional modeling nearly completed

Injection Project Area	Figure	Scenario	Total Pumping (AFY)	Total Injection (AFY)	MB-3	MB-4	MB-14	MB-15	MB-1	MB-2	HS-1	HS-2	Flippos	
Narrows project area	Figure 9	Base+75% Inj.	1200	825	1.5	1.5	2.5	2.5						
	Figure 10	Base+75% Inj.	1200	825					6	6	3.5	3.5	3.5	
Western project area	Figure 11	Base+25% Inj.	787	825	3.5	3.5					>6	5.5	3	
	Figure 12	Base+75% Inj. (Dry)	995	825	3	3					7.5	4	2.5	
	Figure 13	Base+75% Inj. (Wet)	1200	825	3.5	3.5					4	>4	2.5	

			R			Pumping Wells			
	Model Run	Climatic Conditions	Minimum etention Time (months)	otal Injection (AFY)	otal Pumping (AFY)	HS-1	HS-2	New Well #1*	
	Dun 1 A	Dry	10	400	400	180	220		
	KUNIA	Wet	14	400	400	180	220		
	Dum1D	Dry	7	600	600	180	220	200	
	KUNID	Wet	8	600	600	180	220	200	
	Dum10	Dry	7	400	600	180	220	200	
	KUNIC	Wet	9	400	600	180	220	200	

Phased implementation could improve permittability

MORROBAY

Next Steps

Phase 3 is ready to begin

- Full-scale injection well construction (initially used for pilot testing)
- Permitting support for Title 22
 Engineering Report
- Design criteria for injection well system

MORROBAY

Questions and Discussion

